
2 ROMs, RAM and the Restart Instructions.

The system has 32K of ROM and 64K of RAM in the Z80's 64K address space. To
allow this the ROM can be enabled or disabled as required. Additional expansion
ROMs can be selected giving up to 4128K of program area.

All the Z80 restart instructions, except for one, have been reserved for system use.
RST 1 to RST 5 are used to extend the instruction set by implementing special call
and jump instructions that enable and disable ROMs. RST 6 is available to the user.

2.1 Memory Map.

The memory map is complicated by the fact that into the Z80's address space of 64K
bytes has been squeezed 64K bytes of RAM, 32K bytes of ROM and provision for
ROM expansion of up to 252*16K (nearly 4M) bytes. The address space is divided as
follows:

AMSTRAD CPC464/664/6128 FIRMWARE Page 2.1

Default Screen
Memory

Upper ROMs
(bank switched)

Lower ROM

#10000 #10000

#C000 #C000
Stack, Firmware

Data & Jumpblock

Memory Pool

Firmware Area
#0000 #0000

#4000

Foreground Data

Background Data

#0040

#????
#????

#B100
Foreground Data

#AC00

#????

Background Data

Address RAM ROM

#????

#504 bytes for AMSDOS

The sizes of the two background areas depend on the background ROMs fitted to the
machine (see section 10).

The upper foreground data area need not have its lower bound at #AC00 but this is the
default setting (as used by BASIC). The lower foreground data area need only be
reserved if it is needed (this area is not used by BASIC and is set to zero length). The
memory pool left between the background data areas is also for the foreground
program to use (see section 10).

The 32K of on-board ROM is split into two sections which are handled separately.
Henceforth these will be discussed as if they were separate ROMs. The firmware
resides in the lower ROM. The BASIC resides in the upper ROM. This upper ROM is
bank switched so that up to 252 expansion ROMs (see section 10) can replace it in the
memory map.

2.2 ROM Selection.

There are two mechanisms for switching ROMs in and out of the address space:

a. ROM State.

The upper and lower ROMs may be enabled and disabled separately. When the
upper ROM is enabled data read from addresses between #C000 and #FFFF is
fetched from the ROM. Similarly, when the lower ROM is enabled data read from
addresses between #0000 and #3FFF is fetched from the ROM. When the ROMs
are disabled data is fetched from RAM.

Note that the ROM state does not affect writing which always changes the contents
of RAM.

b. ROM Select.

Expansion ROMs are supported by switching the upper ROM area between ROMs.
Expansion ROMs are addressed by a separate ROM select address byte
implemented in I/O space. ROM select addresses are in the range 0..251, providing
for up to 252 expansion ROMs.

When the machine is first turned on it selects ROM zero. This will usually select
the on board ROM, but an expansion ROM may be fitted at this address, which
will pre-empt the on-board ROM.

See section 10 for a description of the use of expansion ROMs.

2.3 The Restart Instructions.

The Kernel supports the store map in a number of ways. In particular a variety of
facilities are provided to handle subroutine addresses extended to include ROM select
and/or ROM state information. Some of the restart instructions are used to augment
the existing Z80 instruction set. The other restarts are reserved.

Page 2.2 AMSTRAD CPC464/664/6128 FIRMWARE

The firmware area between #0000 and #003F is set up so that the restarts operate
whatever the current ROM state is. The user should not alter the contents of this area
except as indicated in section 18.

The restarts are as follows. A fuller description of their operation can be found in
section 18.

a. The Extended Instruction Set.

LOW JUMP (RST 1)

RST 1 jumps to a routine in the lower 16K of memory. The two bytes following
the restart are assumed to be a 'low address'- so RST 1 can be considered to be a
three byte instruction, rather like a JP instruction.

The top 2 bits of the 'low address' define the ROM enable/disable state required;
the bottom 14 bits give the actual address (in the range #0000 to #3FFF) to jump to
once the ROM state is set up. When the routine returns the ROM state is restored
to its original setting.

The firmware jumpblock, through which firmware routines should be called,
makes extensive use of LOW JUMPs. These LOW JUMPs request the lower ROM
to be enabled, so that the lower ROM may be disabled except when the firmware is
active.

SIDE CALL (RST 2)

RST 2 calls a routine in an associated ROM, It has a very specialised use. A
foreground program (see section 10) may require more than 16K of ROM. The side
call mechanism allows for calls between two, three or four associated ROMs
without reference to their actual ROM select addresses, provided that the ROMs
are installed next to each other and in order.

The two bytes following the restart instruction give the 'side address' of the routine
to call - so the RST 2 can be considered to be a three byte instruction, rather like a
CALL instruction. The top 2 bits of the 'side address' specify which of the four
ROMs to select; the bottom 14 bits, when added to #C000, give the actual routine
address. The upper ROM is enabled, the lower ROM is disabled. Both the ROM
state and the ROM select are restored to their original settings when the routine
returns.

FAR CALL (RST 3)

RST 3 calls a routine anywhere in memory, in RAM or in any ROM. The two bytes
following the restart are assumed to be the address of a 'far address'. The 'far
address' is a three byte object, which takes the form:

Bytes 0..1 Actual address of routine to call.
Byte 2: ROM select/state required.

The ROM select/state byte may take the following values:

0-251: Select the upper ROM at this ROM select address.
Enable the upper ROM, disable the lower ROM.

AMSTRAD CPC464/664/6128 FIRMWARE Page 2.3

252-255: No change of ROM select, enable/disable ROMs as follows:

252: Enable upper ROM, enable lower ROM.
253: Enable upper ROM, disable lower ROM.
254: Disable upper ROM, enable lower ROM.
255: Disable upper ROM, disable lower ROM.

Note that the 'far address' is not itself contained in the 'instruction', but is pointed
at. This is because the ROM select address will depend on the particular order in
which the user has chosen to install expansion ROMs and must be established at
run time.

Both the ROM state and the ROM select are restored to their original settings
when the routine returns.

RAM LAM (RST 4)

RST 4 reads the byte from RAM at the address given by HL. It disables both
ROMs before reading and restores the state afterwards. This 'instruction' avoids
the user having to put a read routine into the central 32K of RAM to access RAM
hidden under a ROM.

Writing to a memory location always changes the contents of RAM whatever the
ROM enable state.

FIRM JUMP (RST 5)

RST 5 turns on the lower ROM and jumps to a routine. The two bytes following
the restart are assumed to be the address to jump to - so RST 5 can be considered
to be a three byte instruction, rather like a JP instruction. The lower ROM is
enabled before jumping to the routine and is disabled when the routine returns.
The state of the upper ROM is left unchanged throughout.

b. The Other Restarts.

RESET (RST 0)

RST 0 resets the system as if the machine has just been turned on.

USER RESTART (RST 6)

RST 6 is available for the user. It could be used to extend the instruction set in the
same way that other restarts have been used, or it could be used for another
purpose such as a breakpoint instruction in a debugger.

Locations #0030 to #0037 inclusive in RAM may be patched in order to gain
control of the restart. If the lower ROM is enabled when the restart is executed
then the code in ROM at this address causes the current ROM state to be saved in
location #002B. Then the lower ROM is disabled and the firmware jumps to
location #0030 in RAM. If the lower ROM is disabled then the restart calls #0030
as normal for this Z80 restart instruction.

Page 2.4 AMSTRAD CPC464/664/6128 FIRMWARE

INTERRUPT (RST 7)

RST 7 is reserved for interrupts (see section 11), it must not be executed by a
program.

2.4 RAM and the Firmware.

The ROM state should be transparent to the user. If the current foreground program
(see section 10) is in ROM then the normal ROM state is to have the upper ROM
enabled and the lower ROM disabled. If the current foreground program is in RAM
then the normal state is to have both ROMs disabled. These states allow the
foreground program free access to the memory pool. When a firmware routine is
called the lower ROM is enabled and the upper ROM is usually disabled. This allows
the firmware free access to the default screen memory (but not to all the memory
pool). When the firmware routine returns the ROM state is automatically restored to
what it was.

The cases where the ROM state is important are:

a. Stack

The hardware stack should never be below #4000, otherwise serious confusion will
occur when the lower ROM is enabled and the stack is used - for example, when
interrupts occur or the firmware is called.

Similarly, it is inadvisable to set the stack above #C000 unless it is certain that the
upper ROM is never enabled when the stack is in use.

The system provides a stack area immediately below #C000 which is over 256
bytes long. This should be adequate for most purposes.

b. Communication with the firmware.

Most firmware routines take their parameters in registers. However, some use data
areas in memory to pass information. Most firmware routines that use data areas in
memory read these directly without using RAM LAMs (see above) or the
equivalent. These routines are affected by the ROM state and the ROM select.
They will read data from a ROM if the ROM is enabled and the routine is given a
suitable address. (Note that the jumpblock disables the upper ROM when the
firmware is called). Other firmware routines that use data areas in memory always
read from RAM. They are unaffected by the ROM state and the ROM select.

Routines that always access RAM will mention this in the description of the
routine. Other routines may be assumed to be affected by the ROM state. In
particular the various data blocks used by the Kernel must lie in the central 32K of
RAM for the Kernel to be able to use them.

AMSTRAD CPC464/664/6128 FIRMWARE Page 2.5

c. Communication between upper ROMs.

Programs in upper ROMs may call routines in other ROMs, using the various
Kernel facilities. There is no provision in the firmware, however, for a program in
one ROM to access constants in another.

The majority of firmware routines are called via the firmware jumpblock, which starts
at location #BB00, in the firmware RAM area. The Kernel routines associated with
the memory map are called via one of two other jumpblock areas: the LOW area
between #0000 and #003F, and the HIGH area starting at #B900. All of these routines
and jumpblocks are copied out of the lower ROM into the firmware RAM area when
the Kernel is initialized. Thus they work independently of the ROM state.

2.5 Bank Switching

The ULA in the CPC6128 includes circuitry for bank switching 128K of RAM into the
64K memory map described in section 2.1. The bank switched RAM replaces the
RAM in the memory map and behaves exactly like it; in particular, it is hidden when a
ROM is enabled.

The 128K of bank switched RAM is split into 8 16K blocks, numbered 0..7. There are
8 memory organizations, also numbered 0..7, each of which switches a different set of
four blocks into the memory map at #0000..#3FFF, #4000..#7FFF, #8000..#BFFF and
#C000..#FFFF. The user can select an organization by calling KL BANK SELECT.

The blocks available in each organization are as follows:

Organization Block accessed at memory address

#0000 #4000 #8000 #C000

0 0 1 2 3

1 0 1 2 7

2 4 5 6 7

3 0 3 2 7

4 0 4 2 3

5 0 5 2 3

6 0 6 2 3

7 0 7 2 3

During EMS the CPC6128 selects organization 0 and this is the organization normally
associated with the firmware. Note that blocks 0 and 2 contain firmware variables,
firmware jumpblocks and the stack. All these need to be in their correct places for the
firmware to run.

Page 2.6 AMSTRAD CPC464/664/6128 FIRMWARE

The documentation for a number of firmware routines specifies that data blocks
passed to them should be in the central 32K of memory. In most cases it does not
matter which blocks are switched into the memory map at these places, however, the
Kernel accesses data blocks passed to it (e.g. ticker blocks or RSX command tables)
at various times (e.g. during interrupts or event processing) and it has no control over
the bank switching at such times. It is up to the user to ensure that the Kernel is only
passed data blocks that remain accessible. The simplest solution to this problem is to
ensure that all Kernel data blocks are located in block 2 (between #8000 and #BFFF).

Organizations 4..7 are the firmware organization with a new block switched into the
memory map at #4000. These organizations can be used to access programs or data
stored in blocks 4..7.

Organizations 1..2 are used by CP/M Plus and are not really suitable for general use.
In particular, if organization 2 is selected it is necessary to patch a program into RAM
at #0038 to catch interrupts and to bank switch back to a more normal organization
(e.g. organization 1) to run the standard interrupt code.

Organization 3 is also used by CP/M Plus but it is of interest since it has the RAM
usually used for the screen located at #4000 where it can be accessed without
disabling the upper ROM.

Bank switching has no effect on the CRTC. Base addresses #0000, #4000, #8000 and
#C000 correspond to the screen being in blocks 0, 1, 2 and 3 respectively. It is not
possible to locate the screen in blocks 4-7. However, the firmware routines for
accessing the screen memory are affected by bank switching. For example, if a base
address of #C000 is set in organization 3 then the firmware will have to be told (using
SCR SET POSITION) that the screen memory can be accessed at #4000; if a base
address of #4000 is set in organization 3 then the firmware will be unable to access
the screen memory since block 1 is not in the memory map. (See section 6.4 for a full
description of the screen memory map).

Organizations 4..7 can be used to set up a complete screen in one go by using SCR
SET POSITION to make the firmware write to the memory at #4000 without sending
a new base address to the screen hardware. Then, when the screen has been finished,
the contents of this block can be quickly copied into the block actually being used by
the CRTC (using KL LDIR perhaps). For example, a title screen could be set up and
bank switched out of the way and then switched back in and copied at a later date
when it is wanted.

AMSTRAD CPC464/664/6128 FIRMWARE Page 2.7

	2 ROMs, RAM and the Restart Instructions.
	2.1 Memory Map.
	2.2 ROM Selection.
	a. ROM State.
	b. ROM Select.

	2.3 The Restart Instructions.
	a. The Extended Instruction Set.
	b. The Other Restarts.

	2.4 RAM and the Firmware.
	a. Stack
	b. Communication with the firmware.
	c. Communication between upper ROMs.

	2.5 Bank Switching

