
AMSTRAD CPC464/664/6128 FIRMWARE Appendix 10.1

Appendix X
Kernel Block
Layouts.

The user provides a number of blocks to the Kernel for various purposes. The
layouts of these blocks are described below, mainly for the interest of the user.
There are very few occasions when the user is allowed to write to one of these
blocks. Routines are provided to perform most actions that the user could wish to
perform (see KL INIT EVENT, KL ADD TICKER, KL NEW FRAME FLY, KL
NEW FAST TICKER and KL DISARM EVENT). These routines set values into
the block from registers. The user should not write to the blocks, except as noted
below.

All the following blocks must lie in the central 32K of RAM (otherwise the
Kernel will be unable to access them).

On the CPC6128 the user is advised to keep these blocks in RAM block 2 if any
bank switching is being performed (see section 2.5).

a. Event Blocks.

See section 12 for a general discussion of events and event blocks. An event
block is laid out as follows:

0, 1: Chain
2: Count
3: Class
4,5: Routine address
6: ROM
7+: User

fields

Chain is a system pointer which must never be written to by the user. It is used to
store events on the various event queues.

Class records the type of the event. It should not be written to by the user.

Bit 0: 1 = Near address, 0 = Far address.
Bits 1..4: Synchronous event priority.
Bit 5: Must be zero.
Bit 6: 1 = Express event, 0 = Normal event.
Bit 7: 1 = Asynchronous event, 0 = Synchronous event.

Appendix 10.2 AMSTRAD CPC464/664/6128 FIRMWARE

Note that many system queues are kept in priority order and so the block must be
requeued if the priority is changed, it is not sufficient merely to change the priority
in the event block.

Count is the event count - a record of how many kicks are waiting to be processed
or whether the event is disabled. See section 12.2 for a full discussion of the use of
the event count.

Routine address and ROM make up the far address of the event routine. If the near
address bit in the event class is true then the event routine is at a near address - the
ROM select byte (byte 6) is ignored and the event routine is called directly. If the
near address bit is false then the event routine is at far address - bytes 4,5 and 6
make up the far address to call to run the event routine. The user may write to the
routine address and ROM fields (and to the near address bit in the class byte as
well) provided that the operation is performed indivisibly (i.e. interrupts should be
disabled).

The user fields are optional. They may be used to provide a data area specific to the
event block so that a single event routine may be shared between a number of
different event blocks (the event routine is passed the address of the user fields).

b. Ticker Queue Blocks.

See section 11 for a general discussion of ticker interrupts and the ticker queue.
A ticker queue block is laid out as follows:

0, 1: Tick chain
2,3: Tick count
4,5: Recharge count
6+: Event block

Tick chain is a system pointer which must never be written to by the user. It is used
to store the block on the ticker queue.

Tick count is a count of the number of ticks before the next kick occurs. A tick
count of zero means that the tick block is dormant and will not generate any kicks.
(Ideally a dormant block should be removed from the ticker queue to avoid wasting
time). The user may write to this field if required providing this is done indivisibly.

Recharge count is the value that the tick count is set to after each kick. If the
recharge count is zero then the ticker block will become dormant after generating
one kick. The user may write to this field if required providing this is done
indivisibly.

Event block is a standard event block as described in section (a) above.

AMSTRAD CPC464/664/6128 FIRMWARE Appendix 10.3

c. Frame Flyback Queue Blocks.

See section 11 for a general discussion of frame flyback interrupts and the frame
flyback queue. A frame flyback queue block is laid out as follows:

0,1: Frame chain
2+: Event block

Frame chain is a system pointer which must never be written to by the user. It is
used to store the block on the frame flyback queue.

Event block is a standard event block as described in section (a) above.

d. Fast Ticker Queue Blocks.

See section 11 for a general discussion of fast ticker interrupts and the fast ticker
queue. A fast ticker queue block is laid out as follows:

0,1: Fast chain
2+: Event block

Fast chain is a system pointer which must never be written to by the user. It is used
to store the block on the fast ticker queue.

Event block is a standard event block as described in section (a) above.

