
1 The Firmware

This manual describes the firmware of the Amstrad CPC464 microcomputer. It does
not describe the BASIC language supplied with the system. The manual does describe
certain aspects of the BASIC where these affect other programs and it uses BASIC as
an example program when describing some features of the firmware.

The firmware is the program that resides in the lower ROM (see section 2). Its
function is to control the hardware of the computer and to provide useful facilities for
other programs to use. This avoids every program written having to provide its own
facilities.

This manual is expected to be of interest to anyone who would like to know how the
system works. It is indispensable for programmers writing machine code programs,
particularly system programs (e.g. other languages) and games.

The information presented can be extremely detailed. It covers the operation of the
firmware from the lowest level (e.g. driving the sound chip) to the highest level (e.g.
running a queue of sounds). It is not necessary to understand all the information given
to be able to use the firmware, however, a good grasp of how the system works will
aid the programmer in selecting the most appropriate method for performing a
particular task.

1.1 The Hardware.

The diagram on the following page gives an indication of the different pieces of
hardware in the system and how they connect to each other. For more information on
how the hardware works see Appendix XII and the relevant manufacturer's data
sheets.

The system centres around the CPU (Central Processing Unit) which is a Z80A
microprocessor with a 4MHz clock. Next in importance is the gate array which
contains miscellaneous logic to control much of the system. In particular, it controls
ink colours, screen mode and ROM enabling (see section 9). In conjunction with the
CRTC (Cathode Ray Tube Controller), which is a 6845 chip, the gate array generates
the video signals for the monitor.

The PSG (Programmable Sound Generator) is an AY-3-8912. This chip has three
channels of sound generator, a noise generator, envelope control for each channel and
an I/O port. The way the sound generating hardware is used is described in section 7.
The I/O port is used in input mode to sense the state of the keyboard and joystick
switches.

AMSTRAD CPC464 FIRMWARE PAGE 1.1

The PPI (Parallel Peripheral Interface), which is an 8255 chip, is used to control the
remainder of the system. It has three ports. Port C is used as an output port to control
the cassette recorder motor, to write data to the cassette, to strobe data in or out of the
PSG and to select rows of the keyboard. Port B is used as an input port to sense the
frame flyback signal, the Centronics port busy signal and various option links and to
read data from the cassette. Port A is used to communicate with the PSG and is set
into input or output mode as required.

Accesses to memory are synchronised with the video logic - they are constrained to
occur on microsecond boundaries. This has the effect of stretching each Z80 M cycle
(machine cycle) to be a multiple of 4 T states (clock cycles). In practice this alters the
instruction timing so that the effective clock rate is approximately 3.3 MHz.

PAGE 1.2 AMSTRAD CPC464 FIRMWARE

Monitor

Speaker
s

PSG

CRTC

PPI

Keyboard
and

Joysticks

Gate Array

CPU RAM

ROM

Centronics Port

Cassette Recorder

1.2 The Division of the Firmware.

The firmware is split into 'packs' each dealing with a particular part of the system,
usually a hardware device. Each pack has a section of this manual devoted to it where
its operation is explained in detail. The system components and their associated packs
are:

Keyboard: Key Manager.

Screen: Text VDU, Graphics VDU, Screen Pack.

Cassette/Disc: Cassette Manager.

Sound: Sound Manager.

Operating System: Kernel, Machine Pack, Jumper.

a. Key Manager

The Key Manager is more fully described in section 3. It deals with scanning the
keyboard, generating characters, function keys, testing for break and scanning the
joysticks.

b. Text VDU

The Text VDU is more fully outlined in section 4. It deals with putting characters on
the screen, the cursor and obeying control codes.

c. Graphics VDU

The Graphics VDU is more fully presented in section 5. It deals with plotting points,
testing points drawing lines.

d. Screen Pack

The Screen Pack is more fully detailed in section 6. It interfaces the Text and
Graphics VDUs with the screen hardware and deals with aspects of the screen that
affect both of these packs, such as screen mode or ink colours.

e. Sound Manager

The Sound Manager is more fully discussed in section 7. It deals with queueing,
enveloping, synchronising and generating sounds.

f. Cassette Manager

The Cassette manager is more fully explained in section 8. It deals with reading from
tape, writing to tape and the cassette motor.

g. Kernel

The Kernel is more fully described in sections 2, 10, and 11. It is the heart of the
operating system and deals with interrupts, events, selecting ROMs and running
programs.

AMSTRAD CPC464 FIRMWARE PAGE 1.3

h. Machine Pack

The Machine Pack is more fully documented in section 13. It deals with the printer
and the low level driving of the hardware.

i. Jumper

Jumper, or rather, the main firmware jumpblock is listed in section 13. The entries in
the jumpblock are described in detail in section 14. Jumper sets up the firmware
jumpblock.

1.3 Controlling the Firmware.

The firmware is controlled by the user calling published routines rather than by the
user setting the values of system variables. This will allow the firmware's variable
layout to be changed in major ways without the user being affected.

The addresses of the routines the user is to call need to remain constant if the
firmware is altered. This is achieved by using jumpblocks (see below).

The advantage of a routine interface is that it allows a number of different system
variables to be altered by the firmware in a consistent way in one operation. If the
system variables had to be set by the user then the firmware could be left in an
indeterminate state if some variables had been set but not others. Also, the routine
type of interface ensures that all the required side effects of a change are taken care of
automatically without the user being troubled with all the details. An example of this
is changing the screen mode (see section 6.1) - changing the size of the screen
requires a number of other people to be informed of the change so that illegal screen
positions and inks are not used.

1.4 Jumpblocks.

A jumpblock is a series of jump instructions placed in memory at well-known
locations. The jumps are to the various routines in the firmware that the user might
want to call. Programs that need to use the facilities provided by the routines in the
jumpblock should call the appropriate jumpblock entries.

If the firmware is altered then it is quite likely that the addresses of some of the
routines available to the user will change. By keeping the address of the jumpblock
constant but altering the entries in the jumpblock so that they jump to the new
addresses of the routines, the change is hidden from the user (providing that the user
is only calling routines via the jumpblock and is not accessing the firmware directly).

To make the change to the firmware completely hidden from the user it is also
necessary to keep the entry and exit conditions of the routines accessed via the
jumpblock constant. The greater part of this manual is taken up with the detailed entry
and exit requirements of the jumpblock entries.

PAGE 1.4 AMSTRAD CPC464 FIRMWARE

The jumpblock is placed in RAM so that the user can alter the entries in it. This
allows the user to trap particular entries and to substitute a new routine that will
replace the standard firmware routine. Provided that the new routine obeys the entry
and exit requirements of the firmware routine, the substitution will not upset
programs unaware of the change.

There are four jumpblocks. These are all listed in section 13. The first and largest
jumpblock is the main firmware jumpblock (see sections 13.1 and 14). This allows the
user to call most firmware routines. The second jumpblock is the indirections
jumpblock (see sections 13.2 and 15). The entries in this jumpblock are used by the
firmware at key moments in order to allow the user to alter the action of the firmware.
The last two jumpblocks are rather special. They are to do with the Kernel and allow
ROMs to be enabled and routines in ROMs to be called. (See sections 13.3, 13.4, 16
and 17).

Section 1.7 below gives an example of how a jumpblock entry might be changed to
alter the action of the firmware.

1.5 Conventions.

a. Notation

Processor instructions are generally referred to by their standard Z80 mnemonics. The
exceptions that prove the rule are the restart instructions. The mnemonics RST 0..
RST 7 are used rather than the more usual Z80 mnemonics RST #00.. RST #38.

The registers are also referred to by their standard Z80 names. The flag register as a
whole is referred to as F but the individual flags are called by their full name, e.g.
carry. The flags are said to be true when they are set and false when they are clear.
Thus a JP NC instruction would jump if carry was false and not if carry was true.

Hexadecimal numbers are indicated by prefixing the number with #, thus #7F is the
number 127 in hex. All numbers not prefixed by # are in decimal.

Large numbers are often abbreviated by writing them as a multiple of 1024. For
example, 32K bytes means 32 times 1024 (i.e. 32768) bytes.

b. Usage

Routines, where possible, take and return values in registers. Where more information
than may be held in registers is to be passed to a routine, the address of a data area is
given. The location in memory of these data areas is sometimes critical, see section
2.4.

Where a routine can succeed or fail this condition is normally passed back in the carry
flag. Carry true normally implies success, whilst carry false normally implies failure.

The alternate register set, AF' BC' DE' HL', is reserved for use by the system. The
user should not execute either an EX AF,AF' or an EXX instruction as these will have
unfortunate consequences. (See Appendix XI for a full description.)

AMSTRAD CPC464 FIRMWARE PAGE 1.5

c. General

The logical values true and false are generally represented by #FF and #00
respectively. Often, however, any non-zero value is taken to mean true.

The bits in a byte are numbered 0..7, with bit 0 being the least significant bit and bit 7
being the most significant bit.

Where two byte (word) values are stored (in tables etc) they are always stored with
the less significant byte first and the more significant byte second, unless a specific
indication to the contrary is given. This is in accordance with the standard way the
Z80 stores words.

Tables and the like are always laid out with byte 0 being the first byte of the table.
When the address of such a table is given this is the address of byte 0 of the table
unless otherwise indicated.

When the computer is turned on (or when it is reset) it completely initializes itself
before running any program. This initialization is known as early morning startup,
abbreviated to EMS from now on.

1.6 Routine Documentation.

Each routine described in this manual has entry and exit conditions associated with it.
Where there are other points of interest about the routine these are normally given in
a section after the entry and exit conditions. Such points include whether interrupts
are enabled and a fuller description of the parameters and side effects of the routine.

There are two reasons for providing this information. Firstly it tells the user what will
happen when the routine is called. Secondly it tells the user what a replacement
routine is expected to do.

The entry conditions tell the caller of the routine what the routine expects to be
passed to it. When calling a routine all values specified must be supplied.
Values may only be left out where the routine documents that they are optional.
When providing a replacement routine to fit this interface only information that
is specified may be used, although not all of it need be used.

The exit conditions tell the caller what values the routine passes back and which
processor registers are preserved. Registers that are documented as being
corrupted may be changed by the routine or may not. The user should not rely
on their contents. When providing a routine to fit this interface it is extremely
important that registers documented as being preserved are indeed preserved
and that the values returned are compatible with the original routine. Corrupting
a register or omitting a result will usually cause the system to fail, often in
subtle and unexpected ways.

PAGE 1.6 AMSTRAD CPC464 FIRMWARE

Often a routine will have different exit conditions depending on some condition
or other (usually whether it worked or not). In these cases the specific
differences in the exit conditions are given for each case and all conditions that
remain the same irrespective of the case are given in a separate section (marked
'always').

There are abundant examples of routine interfaces in sections 14 to 17.

1.7 Example of Patching a Jumpblock.

The following is an example of how the jumpblocks may be used. At this stage many
of the concepts introduced may be unfamiliar to the reader. However, since altering
jumpblocks is an important technique for tailoring the system to a particular purpose
the example is given here. Later sections will explain the actions taken here.

Suppose an assembler program is being written that is intended to use the printer
when it is finished. While this program is being written it would save time and paper
if the program could be made to use the screen instead of the printer. However,
changing the program itself to use the screen could introduce bugs when it is changed
back to using the printer. What is needed is a way of altering the action of the
firmware that drives the printer - and this is what a RAM jumpblock is for.

The technique that will be used is to ‘connect’ the printer to a particular text window.
This can be achieved by writing a short routine to send the character to the screen and
patching the entry in the jumpblock for sending characters to the printer, MC PRINT
CHAR, so that it jumps to this routine instead of its normal routine.

The substitute routine will have to obey the entry/exit conditions for MC PRINT
CHAR. These can be found in the full description of this entry in section 14. Briefly
they are as follows:

MC PRINT CHAR:

Entry conditions:

A contains character to print.

Exit conditions:

If the character was sent OK:

Carry true.

If the printer timed out:

Carry false.

Always:

A and other flags corrupt.

All other registers preserved.

AMSTRAD CPC464 FIRMWARE PAGE 1.7

The action of the substitute routine will be to select the screen stream that the printer
output is to appear on, to print the character on the stream and then to restore the
stream that was originally selected. To do this the substitute routine will need to call
the routines TXT STR SELECT and TXT OUTPUT. Once again the full descriptions
of these jumpblock entries can be found in section 14. The entry/exit conditions are as
follows:

TXT STR SELECT:

Entry conditions:

A contains stream number to select.

Exit conditions:

A contains previously selected stream number.
HL and flags corrupt.
All other registers preserved.

TXT OUTPUT:

Entry conditions:

A contains character to print.

Exit conditions:

All registers and flags preserved.

The code for the substitute routine could be written as follows (stream 7 has been
chosen as the stream on which printer output is to appear):

PUSH HL
PUSH BC
;
LD B, A ;Save the character to print
;
LD A, 7 ;Printer stream number
CALL TXT_STR_SELECT ;Select the printer stream
LD C, A ;Save the original stream number
;
LD A, B ;Get the character again
CALL TXT_OUTPUT ;Send it to the screen
;
LD A, C ;Get the original stream number
CALL TXT_STR_SELECT ;Reselect the original stream
;
POP BC
POP HL
SCF ;The character was sent OK
RET

PAGE 1.8 AMSTRAD CPC464 FIRMWARE

Note the following points:

1/ MC PRINT CHAR preserves HL and BC. The routine above uses B and C for
temporary storage and HL is corrupted by TXT STR SELECT. HL and BC are
therefore pushed and popped to preserve them through the substitute routine.

2/ MC PRINT CHAR returns a success/fail indication in the carry flag. Since the
routine above can never fail it always sets the carry flag to indicate success.

3/ The routine above does not change which text stream is selected. It selects the
stream it is going to print on and restores the previously selected stream when it
has printed the character. The firmware is written in such a way as to allow
routines to restore the original state when they finish if required.

To use the substitute routine it is necessary to patch it into memory and to change the
jumpblock entry for MC PRINT CHAR to jump to it. Assume that some memory at
#AB00 has been reserved for the substitute routine and that the routine has been
patched into memory. The MC PRINT CHAR entry in the jumpblock is at location
#BD2B (as can be seen by inspecting section 13.1.8). The three bytes of the entry
should be set to the instruction JP #AB00 by patching as follows:

#BD2B #C3
#BD2C #00
#BD2D #AB

From now on all text sent to the printer will appear on the screen on stream 7. Of
course, stream 7 should have its window set so that it does not interfere with any
other streams using the screen.

This redirection will remain in force until the jumpblock entry is restored. This can be
achieved by patching the jumpblock back again or by calling JUMP RESTORE or by
causing an EMS initialization to take place by resetting the system.

AMSTRAD CPC464 FIRMWARE PAGE 1.9

	1 The Firmware
	1.1 The Hardware.
	1.2 The Division of the Firmware.
	a. Key Manager
	b. Text VDU
	c. Graphics VDU
	d. Screen Pack
	e. Sound Manager
	f. Cassette Manager
	g. Kernel
	h. Machine Pack
	i. Jumper

	1.3 Controlling the Firmware.
	1.4 Jumpblocks.
	1.5 Conventions.
	a. Notation
	b. Usage
	c. General

	1.6 Routine Documentation.
	1.7 Example of Patching a Jumpblock.

